The Spectral Flow of the Odd Signature Operator and Higher Massey Products

نویسنده

  • Eric P. Klassen
چکیده

Let EC denote the complexified adjoint Lie-algebra bundle associated to P . For the purposes of this summary, we will assume that E = EC; the more general case will be dealt with in section 7. Let dt : Ω (M ;EC)→Ω (M ;EC) denote the exterior derivative corresponding to At for each t. At t = 0, we wish to calculate the dimension of ker(D0), which gives the number of eigenvalues λα(t) of Dt passing through 0 at t = 0. Then, for each of these λα(t) which vanish at t = 0, we need to calculate the first non-vanishing derivative of λα(t) at t = 0. Because the analyticity of At implies that each λα(t) is analytic, this information will give a complete description of the spectral flow of Dt near t = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A splitting formula for the spectral flow of the odd signature operator on 3–manifolds coupled to a path of SU(2) connections

We establish a splitting formula for the spectral flow of the odd signature operator on a closed 3–manifold M coupled to a path of SU(2) connections, provided M = S ∪X , where S is the solid torus. It describes the spectral flow on M in terms of the spectral flow on S , the spectral flow on X (with certain Atiyah–Patodi–Singer boundary conditions), and two correction terms which depend only on ...

متن کامل

The Sums and Products of Commuting AC-Operators

Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.  

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Calderon Projector for the Hessian of the Perturbed Chern-simons Function on a 3-manifold with Boundary

The existence and continuity for the Calderón projector of the perturbed odd signature operator on a 3-manifold is established. As an application we give a new proof of a result of Taubes relating the mod 2 spectral flow of a family of operators on a homology 3-sphere with the difference in local intersection numbers of the character varieties coming from a Heegard decomposition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997